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A B S T R A C T   

Ruthenium polypyridine complexes anchored to TiO2 surfaces are promising anodes for dye sensitized photo-
voltaic and photoelectrochemical solar cells. In this work, we synthesized a series of ruthenium polypyridine 
complexes, [RuII(tpy)(dcb)L]n+ (tpy = 2,2′,2′’-terpyridine, dcb = 4,4′-dicarboxy-2,2′-bipyridine and L = Cl− (Ru- 
Cl), CN− (Ru-CN) and CH3CN (Ru-ACN), and employed them to functionalize rutile TiO2(110)–(1 × 1) single 
crystal surfaces. Photoelectron spectroscopy measurements show that deposition of the Ru complexes from so-
lution results in surface coverages close to a monolayer, with the Ru complexes maintaining their coordination 
sphere intact. Furthermore, all the complexes bind to the substrate through the deprotonated carboxylic acids in 
a bidentate manner leading to a decrease in the substrate work function. Additionally, the energy of the HOMO 
electronic state shifted toward the valence band of the semiconductor as the electron-donating capacity of the 
ligand decreased from Ru-Cl to Ru-CN to Ru-ACN. DFT calculations of the three systems are in good agreement 
with the experimental results showing how the chemical nature of the substituted ligand governs the energy of 
the HOMO state whereas the position of the LUMO state remains practically unchanged. The findings presented 
here contribute to a deeper understanding of the factors that control the electronic structure of Ru polypyridine 
complexes on semiconductor surfaces.   

1. Introduction 

Ruthenium polypyridine complexes have attracted significant 
attention since the discovery of dye-sensitized solar cells, representing 
promising devices for generating clean and renewable energy [1–3]. 
Since then, a wide variety of applications based on ruthenium complexes 
adsorbed on semiconductor surfaces have arisen. These applications 
span water oxidation catalysts [4,5], photoelectrochemical cells [6], 
photonic and optoelectronic devices [7,8], photochemical drug delivery 
[9,10] and photoswitches [11]. The versatility of Ru polypyridine 
complexes in this broad set of applications is attributed to their strong 
absorption in the visible region, the photostability and energy-donating 
ability of their excited states coupled with their synthetic flexibility that 
allows tuning of their electronic properties. 

Ruthenium complexes must be anchored to a suitable electrode, 
typically a metal oxide semiconductor [2,3], to function as 

photosensitizers in solar cells. Carboxylic acids are commonly employed 
as anchoring groups as they can form covalent bonds with oxide surfaces 
[12]. Upon excitation of the molecule with a photon from a visible light 
source an electron is injected to the conduction band and the Ru com-
plex is subsequently regenerated by an electron donor. Conversion ef-
ficiencies rely mostly upon energy matching of the HOMO and LUMO 
electronic states with the bands of the semiconductor and the electron 
donor [13,14]. Therefore, comprehending the factors that control the 
electronic structure of the Ru complex-functionalized surfaces is essen-
tial for designing complexes with enhanced photoenergy conversion 
efficiency. 

The literature offers numerous examples of ruthenium polypyridine 
complexes acting as photosensitizers adsorbed on different surfaces. 
Most studies have focused on n-type semiconductors, particularly 
nanostructured and mesoporous TiO2 (anatase and rutile) films due to 
their high surface areas [8,13,15–26]. Furthermore, anatase TiO2 (101) 
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and rutile TiO2 (110) well-defined single crystal surfaces have been 
employed to achieve a better understanding of the molecular and elec-
tronic structure of the adsorbed Ru complexes [27–30]. Some in-
vestigations have also explored using ZnO surfaces, although they 
showed smaller conversion efficiencies [31]. There are also studies on 
the adsorption of Ru complexes on p-type semiconductors such as CuI, 
CuSCN, NiO and CuO [14,32]. In these cases, the photosensitization 
process involves hole transfer from the complex to the electrode [15] 
and achieving energy matching between the HOMO state and the 
valence band is important for efficient energy conversion. These studies 
underscore the significance of comprehending the factors governing the 
energy levels of the HOMO and LUMO electronic states relative to the 
valence and conduction bands of the semiconductor. 

Density functional theory (DFT) calculations play an important role 
investigating the structure, electronic properties and electron transfer 
mechanisms of Ru-complexes adsorbed on TiO2 [33–38]. Researchers 
have employed both clusters and, more recently, periodic slabs to model 
the semiconductor surface. DFT studies indicate that carboxylic acid 
containing dyes bind to the surface through carboxylate groups in a 
bidentate geometry [34,37,39]. In the absence of protons, a bidentate 
bridging binding mode is observed, while in the presence of protons, a 
mixed bidentate/monodentate binding mode is favored [35]. Calcula-
tions also showed the dye HOMO located in the band gap of the semi-
conductor substrate [33]. Furthermore, interfacial electron transfer 
from the excited dye to the semiconductor is facilitated when the dye 
LUMO overlaps with the semiconductor conduction band [38]. 

In this study we designed, synthesized and characterized, a series of 
ruthenium polypyridine complexes containing carboxylic acids as 
anchoring groups and ligands with different electronic donor properties: 
[RuII(tpy)(dcb)L]n+ (tpy = 2,2′,2′’-terpyridine, dcb = 4,4′-dicarboxy- 
2,2′-bipyridine and L = Cl− (Ru-Cl), CN− (Ru-CN) and CH3CN (Ru- 
ACN)) (see Fig. 1). These Ru+2 complexes were deposited from solution 
onto rutile TiO2 (110)–(1 × 1) single crystal surfaces. We characterized 
the molecular and electronic structure of the absorbed complexes using 
X-ray and UV photoelectron spectroscopy (XPS and UPS) in conjunction 
with density functional theory (DFT) calculations. Experimental mea-
surements indicate that changes in the electronic structure of the com-
plexes caused by substituting a ligand influence the electronic structure 
of the adsorbed complex. Furthermore, DFT calculations effectively 
reproduce these findings, offering a comprehensive understanding of the 
electronic structure of the system, surface bonding, and geometric 
arrangement. 

1.1. Experimental methods 

We synthesized and characterized the Ru complexes as detailed in 
the supporting information. Rutile TiO2(110) single crystals were ob-
tained from CrysTec GmbH. Solvents used for spectral, electrochemical, 
and photoelectronic measurements were purified following established 
procedures [40,41]. All other synthesis materials were of reagent grade 
and obtained commercially without further purification. Before char-
acterization, all complexes underwent a minimum of 24 h of vacuum 
desiccation. 

Absorption spectra in the UV–vis region were recorded with a 
Hewlett-Packard 8453 diode array spectrometer (range 190–1100 nm). 
IR spectra of the samples in KBr pellets were obtained with a Nicolet 
iS10 FT-IR spectrometer (range 11,000–400 cm− 1). 1H NMR spectral 
data were acquired with a Bruker ARX500 spectrometer, using deuter-
ated solvents from Aldrich. Electrochemical measurements were per-
formed with millimolar solutions of the compounds, using a TEQ V3 
potentiostat and a standard three-electrode arrangement consisting of a 
glassy carbon disc (area = 9.4 mm2) as the working electrode, a plat-
inum wire as the counter electrode and a silver wire as the reference 
electrode plus an internal ferrocene (Fc) standard. The supporting 
electrolyte was tetra-n-butylammonium hexafluorophosphate (TBA)PF6 
0.1 M. A scan rate of 100 mV s− 1 was employed in all cases. All poten-
tials reported here were referenced to the standard Ag/AgCl saturated 
KCl electrode (0.197 V vs. NHE), with the conversions being performed 
with literature values for the Fc+/Fc couple [42]. UV–vis and electro-
chemical measurements were also performed on Ru complexes adsorbed 
on highly porous and ordered mesoporous TiO2 thin films deposited on 
transparent and conductive substrates. Films were grown on a 
fluorine-doped tin oxide (FTO) covered glass by using stablished pro-
cedures [43] and complexes were deposited by dipping the substrate in a 
5.10− 4 M methanolic solution overnight. The film was subsequently 
removed from the solution, immersed in methanol overnight, and then 
washed with acetone before being left to dry in air. 

XPS measurements were conducted in an ultrahigh vacuum (UHV) 
chamber with a base pressure below 5 × 10− 10 mbar using a SPECS 
spectrometer system equipped with a 150 mm mean radius hemi-
spherical electron energy analyzer and a nine channeltron detector. XPS 
spectra were obtained on grounded conducting substrates at a constant 
pass energy of 20 eV using a monochromatic Al Kα (1486.6 eV) X-ray 
source operated at 15 kV and 20 mA at a detection angle of 20◦ with 
respect to the sample normal. Binding energies of the Ti 2p and O 1s 
regions were aligned to the substrate Ti 2p3/2 signal at 459 eV [44], 
while the C 1s-Ru 3d, N 1s and Cl 2p regions were referenced with 
respect to the aliphatic C 1s signal at 285 eV [45]. Prior to each 
experiment, the rutile TiO2 (110) single crystal was cleaned by several 
cycles of Ar+ sputtering and annealing until no impurities were detected 
by XPS. UPS measurements were conducted in the same UHV chamber 
using a He I radiation source (21.2 eV) operated at 100 mA with normal 
detection and a constant pass energy of 2 eV. 

Deposition of the Ru complexes on the TiO2 (110) surface was car-
ried out in an argon-filled liquid cell attached to the UHV chamber. The 
clean TiO2 (110) crystal was dipped in a 10− 4 M methanolic solution of 
the ruthenium polypyridine complexes at room temperature for 1 h 
without exposure to the laboratory atmosphere. Afterwards, the crystal 
was removed from the solution, rinsed with methanol (3 × 10 mL) and 
dried with Ar. The sample was then transferred from the argon atmo-
sphere to the UHV chamber for measurements. 

DFT calculations were performed using the Vienna Ab-Initio Simu-
lation Package (VASP) which employs a plane-wave basis set and a 
periodic supercell method [46–48]. Potentials within the projector 
augmented wave (PAW) method [49] and gradient-corrected func-
tionals in the form of the generalized-gradient approximation (GGA) 
with Perdew Burke Ernzerhof (PBE) functional [50] were used. Van der 
Waals interaction between pairs was included by means of Grimme 
DFT-D2 method [51]. A kinetic energy cutoff of 400 eV was employed 

Fig. 1. Molecular structure of the [RuII(tpy)(dcb)L]n+ (L = Cl− (Ru-Cl) n = +1, 
CN− (Ru-CN) n = +1 and CH3CN (Ru-ACN) n = +2) complexes studied in 
this work. 
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for all the calculations. The strong electron correlation effects of the Ti 
3d electrons were described by a Hubbard-type on-site Coulomb repul-
sion using the DFT + U Duradev’s approach with an effective U value of 
10 eV [52,53]. The rutile TiO2 (110)–(1 × 1) surface was modeled with a 
slab containing three Ti layers and 3 × 5 surface unit cells, resulting in a 
1.97 × 1.47 × 0.78 nm supercell (see Fig. 2), large enough to avoid the 
interaction between adsorbed molecules. Lattice parameters obtained 
from bulk optimization were used to build the slab. The first Ti layer 
including all its neighboring O ions was allowed to fully relax, while the 
bottom layers of the slab were fixed to their bulk positions. A vacuum 
gap of approximately 3.2 nm was employed to avoid interactions with 
neighboring slabs. In order to determine the most stable adsorption sites, 
in all cases, the ruthenium complex adsorbate was fully relaxed as well 
as the first Ti layer, including all its neighboring O ions. For all calcu-
lations, a cut condition of 10− 3 eV for the total energy between two 
ionic relaxation steps was considered. The electronic relaxation 
convergence criterion was set to 10− 4 eV and a set of 5 × 5 × 1 
Monkhorst-Pack k-points was used [54]. Total density of states (TDOS) 
and projected density of states (PDOS) curves were used to analyze the 
electronic structure. In this case a 7 × 7 × 1 k-points grid was employed. 
Finally, the work function (Φ) was calculated as the difference between 
the potential in the middle of the vacuum layer and the Fermi energy 
[55]. 

2. Results and discussion 

The influence of ligands in the electronic properties of Ru poly-
pyridine complexes is well-understood [56,57] and the properties of the 
three complexes reported here illustrate this point. The left panel in 
Fig. 3 shows the UV–vis absorption spectra of the three complexes in 
methanol with their signal positions listed in Table I. This family of 
compounds exhibits strong low energy metal-to-ligand charge-transfer 
(MLCT) bands in the visible region corresponding to the overlap of 
electronic transitions from dπ(Ru) orbitals to π*(tpy) and π*(dcb) or-
bitals [58,59]. These bands are centered at 2.71 eV (457 nm), 2.59 eV 
(478 nm) and 2.46 eV (504 nm) for Ru-ACN, Ru-CN and Ru-Cl 
respectively. The energy of these transitions depend on the energy of the 
4d Ru donor orbitals and the acceptor orbitals located on the poly-
pyridine ligands. The chloride ligand acts as an electron density donor 
via π interactions and destabilizes the 4d Ru orbitals upon bonding [60, 
61]. The cyanide ligand also exhibits π interactions, but it is a weaker π 
donor. The acetonitrile ligand serves as a weak base and a π acceptor. 
Since the ligands have minimal impact on the acceptor orbitals of the 
polypyridines, the destabilization of the 4d Ru orbitals, due to the 
increasing electron donor capacity of the substituted ligand, results in a 
redshift of the MLCT bands in the series from Ru-ACN, to Ru-CN, to 

Ru-Cl. 
The observed electrochemical properties of this series also reflect the 

impact of the ligand́s electron-donor ability on destabilizing the Ru 4d 
orbitals [57]. Fig. 3 shows cyclic voltammograms of the complexes in 
solution. In all cases a single peak attributed to the oxidation of the 
metallic ion is observed consistent with the behavior of other ruthenium 
(II) polypyridine compounds [58,62]. For the complexes Ru-ACN, 
Ru-CN and Ru-Cl the π electron-donor capacity of the substituted ligand 
increases causing a shift to lower potentials. Specifically, it shifts from 
1.52 V vs. Ag/AgCl for Ru-ACN to 1.24 and 0.99 V, for Ru-CN and Ru-Cl 
respectively. 

Visible spectroscopy, in principle, can also be used to monitor 
changes in Ru polypyridines attached to the surface of transparent 
semiconductors. Unfortunately, the molar absorptivity of these com-
plexes, while relatively high, is not sufficient to detect a monolayer of 
complexes on flat substrates; instead, thick films with high surface area 
are required. Fig. 4 shows UV–vis absorption spectra and cyclic vol-
tammograms of the Ru complexes adsorbed on mesoporous TiO2 thin 
films deposited on transparent and conductive substrates. Overall, we 
observe the same trends as those seen for the Ru complexes in solution 
(see Fig. 3), where MLCT transitions are red-shifted and oxidation peaks 
shift to lower potentials as the electron-donor capacity increases from 
Ru-ACN, to Ru-CN to Ru-Cl. Furthermore, we note a significant 
broadening and change in shape of the peaks, indicating Ru complexes 
in different local environments within these films. Note that in the case 
of Ru-ACN the peak at around 400 nm is the second MLCT band of Ru- 
ACN (also visible in the solution spectra of this complex) enhanced by 
the light dispersion of the substrate film. It is important to take into 
consideration that the spectra of Fig. 4 were acquired using different 
films and that the light dispersion properties of these films may vary 
preventing from removing the contribution of the film from the spectra. 
The same second MLCT band is also apparent as shoulders in the spectra 
of complexes Ru-Cl and Ru-CN as these films showed less light 
dispersion. 

Fig. 5 shows the Ti 2p3/2 and O 1s XPS regions of the three complexes 
deposited on TiO2 (110) surfaces: the initially clean TiO2 (110) surface 
(black curves) and after functionalization with Ru-ACN, Ru-CN and Ru- 
Cl (blue, red and pink curves, respectively). Note that the intensity of the 
spectra corresponding to the initial TiO2 (110) surface was multiplied by 
a factor of 0.2 for the sake of clarity. Ru complex adsorption results in 
the expected attenuation of the substrate Ti 2p3/2 and O 1s XPS signals as 
some substrate photoelectrons lose energy as they travel though the 
topmost Ru complex molecular layers. Indeed, the Ru complex coverage 
can be estimated from the attenuation of the Ti 2p3/2 XPS peak. Using 
the inelastic mean free path measured for carboxylic acid functionalized 
porphyrin molecules deposited on TiO2 (110) [12] a coverage close to a 
monolayer was estimated for Ru-Cl (1.1 ML) and Ru-CN (1.0 ML). 
However, in the case of Ru-ACN a coverage of 0.6 ML was estimated. 
These findings show that, under the same deposition conditions, the 
acetonitrile complex results in half the coverage compared to the other 
systems. The reason for this may be found in the charge of each complex, 
as larger charge would imply larger lateral repulsion interactions and 
hence lower coverage (Ru-Cl and Ru-CN are 1+ cations whereas 
Ru-ACN is a 2+ cation). Given that XPS indicates no adsorption of the 
hexafluorophosphate counter anion, overall charge neutrality of the 
surface might be obtained by deprotonation of the carboxylic acid 
functional groups and by the rapid proton exchange taking place at the 
solution/TiO2 interface resulting in the formation of Ti-OH groups at the 
surface [63]. 

The O 1s XPS spectra is dominated by the TiO2 signal at around 530.5 
eV [12]. Adsorption of the Ru complexes results in the appearance of a 
broad shoulder centered at approximately 532.4 eV with contributions 
from –C––O, –C–O–Ti and Ti–OH [64]. Furthermore, the O 1s XPS 
spectra shows no evidence of a peak at 534 eV which would correspond 
to –C–OH [12], this suggests that all Ru complexes bind to the sub-
strate through the deprotonated carboxylic acids. This finding is in 

Fig. 2. DFT-optimized geometry of the supercell employed in the calculations. 
The slabs contain three Ti layers and 3 × 5 surface unit cells. Red spheres 
represent O atoms and blue spheres Ti atoms.(For interpretation of the refer-
ences to color in this figure legend, the reader is referred to the web version of 
this article.) 
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complete agreement with experimental and theoretical calculations 
showing that 4,4′-dicarboxy-2,2′-bipyridine (dcb) adsorbs on TiO2 (110) 
surfaces in a bidentate mode after the deprotonation of both carboxylic 
acid functional groups [65,66]. Furthermore, it is also in agreement with 
the DFT calculation discussed below. 

The C 1s, Ru 3d, N 1s and Cl 2p XPS spectra measured for the clean 
and Ru complex functionalized surfaces are shown in Fig. 6. Note that 
the initial TiO2 (110) substrate surface does not show any XPS detectable 
C, Ru, N or Cl, which confirms that it was atomically clean prior to the 
deposition of the Ru complexes. Formation of the complex layers results 
in the appearance of carbon, ruthenium, nitrogen and chlorine signals 

(chlorine only in the case of Ru-Cl) as expected. The C 1s region of all 
adsorbed complexes show a broad signal centered at 285 eV due to the 
aryl carbons in the polypyridine backbone which overlaps with the Ru 
3d3/2 signal (see below) [67]. The shoulder present at 286.2 eV is due to 
the C–N groups in the polypyridine ligands [67]. The shoulder present 
at 288.2 eV corresponds to the O–C–O moiety [68] overlapping with 
the shake-up satellite present in extended conjugated π systems [68]. 
The Ru 3d5/2 XPS peak is observed at ∽281 eV confirming an oxidation 
state of +2 [69]. Also, the Ru 3d3/2 signal is buried underneath the broad 
285 eV C 1s signal with a 4.2 eV spin-orbit-coupling binding energy 
difference to the Ru 3d5/2 signal. In addition, the slight high binding 
energy shift observed in the Ru 3d5/2 XPS peak when going from Ru-Cl 
to Ru-ACN is consistent with the stabilization of the Ru 3d orbitals as the 
electron donor capacity of the ligand decreases from chloride to cyanide 
to acetonitrile, in agreement with the shifts observed in the UV–vis 
spectra and cyclic voltammograms discussed above. The N 1s XPS 
spectra of all complexes is dominated by a peak centered at ∽400.2 eV 
due to the polypyridine ligands. In the case of Ru-CN, a new peak is 
observed at ∽398 eV. This peak is due to the cyanide ligand [70] and it 
has the expected 1:5 area ratio to the main peak at 400.2 eV. Whereas in 
Ru-ACN, a low binding energy shoulder at ∽399 eV is observed. This 
shoulder can be fitted with a 1:5 ratio to the polypyridine peak and is 
due to the acetonitrile ligand. The Cl 2p XPS region shows the expected 
2p3/2 and 2p1/2 spin orbit coupling doublet present only in the case of 

Fig. 3. Left panel: UV–vis spectra of 10− 5 M methanolic solutions of Ru-Cl (blue line), Ru-CN (red line) and Ru-ACN (pink line). Right panel: cyclic voltammograms 
of Ru-Cl (blue line) and Ru-CN (red line) in dimethylformamide and of Ru-ACN (pink line) in acetonitrile.(For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 

Table I 
Surface coverage (ML), complex stoichiometry, work function change (eV) and 
HOMO state energy position with respect to the Fermi level (eV) calculated from 
the XPS and UPS data. Standard potential (V) versus Ag/AgCl and position of the 
MLCT band maximum (eV).   

Coverage 
(ML) 

Ru:N:Cl ΔΦ 
(eV) 

HOMO 
(eV) 

E 
(V) 

MLCT 
(eV) 

Ru-Cl 1.1 1:5.1:1.1 − 1.18 2.15 0.99 2.46 
Ru-CN 1.0 1:6:0 − 1.17 2.3 1.24 2.59 
Ru- 

ACN 
0.6 1:6.2:0 − 1.18 2.5 1.52 2.71  

Fig. 4. UV–vis spectra (left panel) and cyclic voltammograms (right panel) of Ru-Cl (blue line), Ru-CN (red line) and Ru-ACN (pink line) adsorbed on mesoporous 
TiO2 films deposited over transparent and conductive substrates. All UV–vis spectra were obtained in acetonitrile. Cyclic voltammograms of Ru-Cl and Ru-CN were 
measured in dimethylformamide and that of Ru-ACN was collected in acetonitrile.(For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 
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Ru-Cl and indicating a single chloride chemical environment. 
The Ru:N:Cl ratios calculated from the integrated XPS signals and the 

corresponding atomic sensitivity factors yield 1:5.1:1.1 (Ru-Cl), 1:6.0 
(Ru-CN) and 1:6.2 (Ru-ACN) which are in excellent agreement with the 
nominal ratios. This gives a strong indication that the molecular struc-
tures of the Ru complexes are preserved upon adsorption on the TiO2 
(110) surfaces. We note that all surfaces present a higher-than-expected 
carbon amount due to the inevitable co-deposition of unwanted carbo-
naceous species present in traces in the deposition solutions. However, 
these are minority species which are treated as innocent spectator spe-
cies. Table I shows the main parameters obtained from the XPS and UPS 
measurements. 

Fig. 7 shows the UPS spectra of the initial TiO2 (110) substrate and 
after deposition of the Ru complexes. The left panel shows the high- 
binding energy region focusing on the secondary electron cut-off, 
while the right panel highlights the low binding energy region 
focusing on changes in the electronic states present just below the Fermi 
level. The initial surface (black curve) does not show any significant 
signal in the band gap below the Fermi level except for a barely visible 
electronic state at 0.9 eV due to oxygen defects and Ti interstitials [69, 
71]. This spectrum also indicates that the O 2p valence band commences 
at approximately 2.8 eV below the Fermi level. Upon deposition of Ru 
complexes a new electronic state emerges in the band gap. The position 

of this electronic state is 2.15 eV for Ru-Cl, 2.30 eV for Ru-CN and 2.50 
eV for Ru-ACN and is assigned to the HOMO Ru 4d orbitals (see DFT 
calculations below). In accordance with the aforementioned results, the 
energy of the HOMO state shifts towards higher binding energies as the 
electron donor capacity of the ligand decreases from Ru-Cl to Ru-CN to 
Ru-ACN. Note that in the case of the acetonitrile ligand the HOMO state 
begins to overlap with the semiconductor valence band. Changes in the 
HOMO electronic state intensities could be attributed to changes in the 
not-measured intensity of the UV photon source as well as changes in the 
surface coverage (relevant in the case of Ru-ACN) [72]. 

Deposition of the Ru complexes also affects the substrate work 
function which can be calculated from the width of the UPS spectra. In 
all cases the secondary electron cut-off shifts approximately 1.18 eV 
towards higher binding energies, indicating a uniform decrease in the 
work function. This change is consistent with the formation of a surface 
dipole layer featuring negative charges at the surface/molecule interface 
and positive charges at the molecule/vacuum interface [45]. Given that 
the observed work function decrease is similar for all Ru complexes and 
considering that the coverage of Ru-ACN is approximately half that of 
Ru-Cl and Ru-CN (see XPS results above), it can be inferred that the 
magnitude of the molecular dipole is stronger in Ru-ACN, aligning with 
its larger nominal charge. Once again, these observations are in line with 
the DFT calculations discussed below. 

DFT calculations have proven to be extremely useful for under-
standing the electronic structure of Ru polypyridines. Here we carry out 
DFT calculations of the adsorbed complexes to determine the geometric 
and electronic structure. Several geometrical configurations (see sup-
porting information) were modeled to determine the most energetically 
favorable adsorption sites for the complexes on TiO2(110). Geometry 
optimizations were carried out on the TiO2 (110) supercell surface 
described above employing different bonding modes. The results show a 
molecular surface density of 2.93 nm− 2. Note that this surface coverage 
could be in the order of the experimental monolayer. Fig. 8 displays the 
optimized structures obtained. In all cases the deprotonated bidentate 
configuration proves to be the most stable. This finding is consistent 
with previous DFT calculations of similar complexes adsorbed on 
TiO2(110) showing similar bonding geometries with the oxygen atoms 
in the carboxylic acid groups deprotonated and attached to titanium 
atoms [39]. 

Density of state curves were calculated to analyze the electronic 
structure of the Ru-complex adsorbed on TiO2 (110). Curves for the total 
density of states (TDOS) and partial density of states (PDOS) on the 
ruthenium complexes Ru 4d and C 2p atomic orbital are shown in Fig. 9. 
TDOS for the clean TiO2 is also included as a reference. 

Fig. 9(a) corresponds to Ru-Cl adsorbed on the TiO2 (110) surface. 

Fig. 5. Ti 2p and O 1s XPS spectra regions of the clean substrate (black lines) 
and the functionalized surfaces with Ru-Cl (blue lines), Ru-CN (red lines) and 
Ru-ACN (pink lines).(For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 

Fig. 6. C 1s-Ru 3d, N 1s and Cl 2p XPS spectra regions of the clean substrate (black lines) and the functionalized surfaces with Ru-Cl (blue lines), Ru-CN (red lines) 
and Ru-ACN (pink lines).(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Total DOS (blue line) shows a small shoulder, indicated by an arrow, 
above the valence band. Comparison with the TDOS of the clean surface 
(Fig. 9(d)) indicates that this shoulder is located inside the TiO2 band 
gap region and that it corresponds to a molecular state. PDOS on the 
adsorbed complex (red line) and on Ru 4d states (green line) indicate 
that these states are mainly composed of Ru 4d atomic orbitals and 
correspond to the HOMO level of the system. 

A similar situation occurs when Ru-CN is adsorbed on the surface 
(Fig. 9(b)). In this case, these molecular states composed mainly by Ru 
4d orbitals are also in the band gap of the semiconductor but they are 
shifted towards lower energy values. Finally, Ru-ACN (Fig. 9(c)) also 
shows the HOMO state at the band gap but shifted towards even lower 
energies. These results are in full agreement with the observed electronic 
state assigned to Ru 4d orbitals in the UPS spectra. Furthermore, the 
same shift towards higher binding energies is observed in the series 
going from Ru-Cl to Ru-CN to Ru-ACN. Additionally, Fig. 9 shows that 
the LUMO state, composed mainly by the C 2p orbitals of the ligands, 
overlaps with the semiconductor conduction band and that it remains 
with essentially the same energy as the ligand is modified. The spatial 
distribution of the HOMO and LUMO states is exhibited in Fig. 10. The 
HOMO state presents a great contribution from the Ru 4d orbitals whilst 
the LUMO is delocalized over the π* orbitals of the tpy ligand. 

DFT calculations also show that the work function of the system 
decreases after the adsorption of the different ruthenium complexes. 
Indeed, the difference between the work function of the functionalized 

and clean surfaces yields ΔΦ ∽ − 0.90 eV for Ru-Cl and Ru-CN and ΔΦ ∽ 
− 1.95 eV for Ru-ACN. Note that the larger work function decrease ob-
tained for the acetonitrile complex can be explained by the larger charge 
of the complex that should result in a larger molecular dipole. These 
results are in excellent agreement with the UPS results discussed above 
noting that in the UPS measurements Ru-ACN was present with a lower 
surface coverage compared to the other molecules. Therefore, Ru-ACN 
presents a larger molecular dipole as the same work function change 
was measured in the three cases. 

3. Conclusions 

Photoelectron spectroscopy measurements and DFT calculations 
demonstrate that ruthenium polypyridine complexes, modified with 
carboxylic acid functional groups, effectively bind to well-defined rutile 
TiO2(110) single crystal surfaces, forming covalent bonds in a bidentate 
configuration following deprotonation of the anchoring groups. These 
molecules maintain their coordination sphere upon adsorption, result-
ing in the formation of a surface dipole layer characterized by negative 
charges at the surface/molecule interface and positive charges at the 
molecule/vacuum interface leading to a decrease in the work function of 
the system. The electronic state of the Ru 4d HOMO is found to reside 
within the semiconductor band gap. Importantly, our investigation re-
veals that modifying the electron-donor capacity of the monodentate 
ligand in the Ru complex modulates the position of the Ru 4d HOMO 

Fig. 7. Cutoff and bandgap UPS spectral regions of the clean substrate (black lines) and the functionalized surfaces with Ru-Cl (blue lines), Ru-CN (red lines) and Ru- 
ACN (pink lines). The inset in the right panel shows the normalized signals from the bandgap region after background subtraction. Simplified energy level diagram 
showing valence band (VB), conduction band (CB), Fermi level (EF) and HOMO state.(For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 

Fig. 8. DFT-optimized geometry for Ru-Cl (a), Ru-CN (b) and Ru-ACN (c) adsorbed on TiO2 (110) surfaces. The coloring scheme for the molecule is: O = red, Cl =
dark blue, Ru = green, N = light blue, C = grey and H = pink.(For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.) 
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state within the band gap. Notably, the chemical nature of the mono-
dentate ligand in the Ru complex does not influence the energy of the 
polypyridine-centered LUMO state, which consistently overlaps with the 
semiconductor conduction band. Our findings provide valuable insight 
into the role of ligands in modulating the electronic structure of Ru 
polypyridine complexes adsorbed on TiO2 surfaces. 
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